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Motivation

The Impact of LLMs

Pervasiveness ® omemies -
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(Large) Language Models are everywhere.

Yes, large language models (LLMs) are now widely used in various applications,
including chatbots, text generators, and Al-powered features across many platforms.
Their presence has significantly increased since the introduction of models like

() I nfo rm a't i O n SySte m S ChatGPT, making them a common tool in both business and everyday tasks.
zapiercom W Wikipedia

Auto-generated based on listed sources. May contain inaccuracies.

 Writing Assistants

Ask a follow-up question ‘ € Chat ‘

Was this helpful? & ©
 Chatbots

Medium

https://medium.com » glam-ai » use-lims-replace-lims-7f38c9f6ecd2

Use LLMs. Replace LLMs.. LLMs are everywhere. They are bein...

) 2025 - LLMs are everywhere. They are being shoehorned in every possible process flow, often
without a second thought, seen as magic black box that will solve all our prablems. Al Engineers prefer

skipping...

. arXiv.org
\ https://arxiv.org » abs » 2503.00767

LLMs are everywhere: Ubiquitous Utilization of Al Models throu...

We are witnessing a new era where praoblem-solving and cognitive tasks are being
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DuckDuckGo search interface. Screenshot 29/06/2025.



Motivation

Survey opinion after interacting with opinionated model
I h e I m pa Ct Of L L M S % (Responses) to "Would you say social media is good for society?"

Persuasiveness 5 s, _

Social media is good

. . Control group: _ 330, 350, _ B
Real-world behavioural studies o modesuggestons
L . . ~Model opinion: _ % A B
« Writing assistant latent influence ~ seimeceisie . o
_60% _30% 0% 30% 60%
> Opinionated models influence users’ .
urvey response No Neutra Yes

stances and opinions
Extracted from (Jakesch et al., 2023).

* | LMs interactions influence voting * Decision Making processes

behaviors | -
> US presidential elections setting ~ Interacting with biased models

| Increases probability to make
> Trump-support reduction decisions matching LLM biases
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Concerns

Common Evaluation Strategies

Behavioural Questionnaires

o Studying LLMs behavior through
multiple-choice questionnaires

> Massive use of Multiple Choices
Questions (MCQs)

> Map responses onto more or less
abstract dimensions

> Personality traits (e.g., BIG-FIVE
, Moral
Foundations Questionnaires

), Culture (e.g., World Value
Survey ), ...

Schematic representation of MCQ-based
evaluation pipeline applied to LLMs.




Concerns

Common Evaluation Strategies
The Political Compass Test (PCT)

Authoritarian

e 62-items MCQ

> 4-point Likert scale
- The rich are too highly taxed.

- Qur race has many superior qualities, compared
with other races.

Left «—economic scale— ng ht

e [wo-dimensional results
> Economic / Social
> Disjoint questions

«social scale—

 Main reported findings
> LLMs exhibit liberal, left-leaning, views

Libertarian



Concerns

Common Evaluation Strategies
PCT studies

| LMs Political Behavior Evaluation
Prevalence of the Political Compass Test

>

Default behavior examination (Feng et al., 2023; Motok:
et al., 2023; Rutinowski et al., 2024; Rozado, 2024; Weber et
al., 2024; Faulborn et al., 2025; Shalevska & Walker, 2025)

Dynamic consideration (Liu et al., 2025)

Persona (Bernardelle et al., 2024; Azzopardi & Moshfeghi,
2024)

Languages: Multilingual (Yuksel et al., 2025); Bangala
(Thapa et al., 2023); Japanese (Fujimoto & Takemoto,
2023); Persian (Barkhordar et al., 2024)

Feng et al. (2023). From Pretraining Data To Language Models To Downstream
Tasks : Tracking The Trails Of Political Biases Leading To Unfair NIp Models.

Motoki et al. (2023). More Human Than Human : Measuring Chatgpt Political
Bias.

Weber et al. (2024). Is Gpt-4 Less Politically Biased Than Gpt-3.5 7 A
Renewed Investigation Of Chatgpt’s Political Biases.

Rutinowski et al. (2024). The Self-Perception And Political Biases Of Chatgpt.

Rozado (2024). The Political Preferences Of Lims.

Faulborn et al. (2025). Only A Little To The Left : A Theory-Grounded Measure
Of Political Bias In Large Language Models.

Shalevska & Walker (2025). Are Ai Models Politically Neutral? Investigating
(Potential) Ai Bias Against Conservatives.

Liu et al. (2025). “Turning Right”? An Experimental Study On The Political
Value Shift In Large Language Models.

Bernardelle et al. (2024). Mapping And Influencing The Political Ideology Of
Large Language Models Using Synthetic Personas.

Azzopardi & Moshfeghi (2024). Prism : A Methodology For Auditing Biases In
Large Language Models.

Yuksel et al. (2025). Language-Dependent Political Bias In Ai : A Study Of
Chatgpt And Gemini.

Thapa et al. (2023). Assessing Political Inclination Of Bangla Language
Models.

Fujimoto & Takemoto (2023). Revisiting The Political Biases Of Chatgpt.

Barkhordar et al. (2024). Why The Unexpected? Dissecting The Political And
Economic Bias In Persian Small And Large Language Models.



Concerns

Common Evaluation Strategies

ldeological Questionnaires Issues

* Practical and methodological concerns
> Use of MCQs
> LLMS’ lack of consistency
> Relevance of self-assessment?
> Political Compass critics: spinning arrow , elusiveness

>

 Conceptual concerns
> |deological questionnaires may not be suited to measure LLMs’ political behavior

10



Concerns

Conceptual, Abstract,
Highly Constrained

Converse’s Theory

Overview

|deologues

The Nature of Belief Systems in Mass Public
(Converse, 2006)

Near-ldeologues

* Belief Systems

> « g configuration of ideas and attitudes in which
elements are bound together by some sort of Sy,
constraint or functional interdependence »

 Population Gradient
> Political Elites & Mass Public L Nature of the times @ s sssssne e

No Issue Content

| | Representation of Converse’s belief systems strata.
Converse (2006). The Nature Of Belief Systems In Mass Publics (1964). 11



Concerns

Converse’s Theory

Implications for ldeological Questionnaires

Applying Ideological Questionnaires

* Forces Elite-like belief system structure
> Hinders native framing
> Aggregates into potentially unfitted abstract dimensions

* Not equipped to identify biases that may emerge from lesser constrained
belief systems

> Unfitted for Mass Public-like structured belief systems

12



Converse’s Theory

Situating LLMs in Converse’s strata

LLMs: political elites?

* Trained on vast corpora
> Multiple sources
> Including mass-public written texts
> Likely reflecting various perspectives

 Mass Public Framing
> Loosely constrained
> Highly situational
> |ssue-specific associations

Concerns

LLaMA GLM GPT-3 PalLM Gopher
{‘[, a) E0 ;) "{7‘ ‘[
1_:“2 | -
Chinchilla ERNIE 3.0 T5 phi-1 GLaM
LaMDA (Galactica Falcon MT-NLG GPT-NeoX
CodeGen TigerBot InternLLM BBT-FinTS AlphaCode
\:. 189, '\\ “..\v” ) ,."f \ |
\\ ‘_‘/}, . -\

LJ Webpages L] Code ' Encyclopedia L] Books [ Academic Materials L] Social Media [J Language Texts [J Multi

Distribution of data types in pre-training corpora
13 (extracted from (Liu et al., 2024)).



Concerns

Converse’s Theory

The Risks of Conceptual Optical lllusions

 PCT and ldeological Questionnaires may
be misleading

> Rely on unsubstantiated (undiscussed)
hypothesis

> Not evidences of coherent ideological
structure

* | east Harmful Hypothesis: Mass Public-like
> Help frame LLMSs’ discourse

Rene Magritte. Le Faux Miroir. Paris, 1929.
©2025 C. Herscovici, Brussels / Artists Rights Society (ARS), New York

14
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Compliant
Guidelines




Propositions

Converse-based Guidelines

Open, contextualised, narrow

Recommendations for sounder evaluation practices:

16



Propositions

Converse-based Guidelines

Open, contextualised, narrow

Recommendations for sounder evaluation practices:

 Open-ended

> Native framing, no enforced
perspectives

> Closer to real-world practices

17



Propositions

Converse-based Guidelines

Open, contextualised, narrow

Recommendations for sounder evaluation practices:

e Context-aware

» Situational and unstable attitudes of
mass public

> Crucial in any LLM task

18



Propositions

Converse-based Guidelines

Open, contextualised, narrow

Recommendations for sounder evaluation practices:

* |ssue-centred
> Fragmented belief systems
> Finer granularity, modular

19



Propositions

Complying Approaches

IssueBench

e |ssueBench Dataset: IssueBench

. - realistic templates realistic issues
> Ecological validity
- Based on real-world user-LLM interactions (LMSYS [‘erte ablog,abOUt m X [AI rez‘%UIatlonm
, WildChat — ‘ ‘
- Real-world templates + issues l Model evaluation on each issue
> Open-Ended: writing assistant filtering [ Al regulation |: [pro neutral “on
> |ssue-Centred: issues extraction f / S/
s model stance across templates
> Context-Aware: (minimal) context through
' ' ' Outline of IssueBench evaluation protocol
templates T framlng |ntegrat|0n (extracted from (Réttger et al., 2025)).

* Theoretical modularity
> but practical challenges

20



Propositions

Complying Approaches

News Summarisation

e News Summarisation B | eft BN Right No change
B Lean left Lean right
> (Concrete application setting text-davinci ‘ | i L
> Context-Aware: precise, well-defined task ChatGPT Il 1 .
> Open-Ended: natural language summary Pegasus 1 B L
generation BART T |
> |ssue-Centred: decomposition into issue- BRIO m B [
topics sl |
0% 503% 100%0% 56% 100%
CNN/DM POLITICS

Changes in political stances between the summary and the article
(extracted from (Liu et al., 2024).

21
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Messages




Take-Home Messages

From Abstract Positioning to Mass Public Inspired Evaluation

« Common evaluation practices may be ill-suited

> Framing LLMs through Mass Public-like exhibited belief systems, rather than
ideologues

* Converse-grounded propositions
> Open-Ended, Context-Aware, Issue-Centred
> Still many challenges: evaluation strategies, low-resource settings, cultural differences,

» Alternative lead: measuring constraints
> Quantifying the level of constraints within LLMs’ exhibited political behavior

23
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