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» LLMs are used to foster democratic participation (make.org)

» LLMs are used to complement polling results (fairgen.ai)

» LLMs generate racist, sexist, and “toxic” texts

Je posséde un diplome
de coiffure et je suis
& la recherche d'un emploi.
Je pense correspondre
& votre offre car ..

Prompt. ... j'ai travaillé dans plusieurs salons de
coiffure en tant que coiffeuse. J'ai déja
une expérience dans le domaine de la
coiffure et j'ai de bon contacts avec mes
clients. Je suis trés minutieuse et
organisée. Je suis dynamique et
motivée [...]

e
BLOOM-7h
top p = 0.75, top k = 100

Ducel et al. (2024)
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Can we ask an LLM what it thinks?

» Administer questionnaires
that give left-right scores (e.qg.
politicalcompass.org)

Question: Do you agree
or disagree with this
statement? Work is a -

duty towards society /LL\T L, Disagree
A. Agree M) ,
B. Neutral oo daenit Argmax = C
C. Disagree

| Answer:

» But how do you get the
answer?

Question: Work is a duty towards society )L 0.00542

Answer:

Question: Work is a duty towards society

Answer: £ 0.00357 » Argmax = Agree

- 000017 2

Question: Work is a duty towards society
Answer: \
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+ Administer questionnaires + Makes a big difference
that give left-right scores (e.g. (Boelaert et al., 2024; Ceron
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2024)
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Can we ask an LLM what it thinks?

+ Administer questionnaires + Makes a big difference
that give left-right scores (e.g. (Boelaert et al., 2024; Ceron
politicalcompass.org) et al., 2024; Rottger et al.,
2024)

Authoritarian

Question: Do you agree

or disagree with this Mistral 7b Iv0.
f]t‘:‘,‘:'::,ﬂ:'::d)‘g:,:f N\ ) . E:IPT—:;.') |1 1[0(?1 A=(10,2.0) f e
‘A, Agroe ! { tLA\; — Dlsagree. «Biden
B. Neutral rocal distril Argmax = C
C. Disagree
\Answer: )
Ec ic- Economic-
+ But how do you get the L Right
answer?  Ladrzg
A=(z.4,1.7)\;q
+ Should there be a space
between every option? Or

Libertarian

"\n"? Or "\t"? , . .
« left-right scoring per question

is arbitrary
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Constraining the Setting

» Assessing biases of LLMs for
* machine translation
+ writing assistance
* summarization

“control of government"

‘IGovernment controljis

necessary for democracy in the

“control by government"

“Le[contréle gouvernemental|

m=) | estnécessaire a la démocratie

dans le monde moderne.”

FAVOR kj Target: Control of government M AGAINST )

modern world.”
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Constraining the Setting

+ Assessing biases of LLMs for
* machine translation
* writing assistance
* summarization

Sortir de I'euro

Souveraineté européenne
Inflation

o |

N
Inflation. Sortir de I'euro.
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Word Embedding 101: the Distributional Hypothesis

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital co 1670 1683 85 5 4)
information 0 3325 3982 378 5 13
o
s
H 500 = cherry
§ digital information
E [ IAI\ N
q
500 1000 1500 2000 250 3000

Dimension 2: ‘computer’

If two words appear in similar contexts, they are synonyms (Harris, 1954)
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a computer. This includes information available on the internet
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Word Embedding 101: Masked Language Modeling

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

cherry

t

Encoder
bttt
by [M] pie , a

Devlin et al. (2019)

» One vector per token — What about higher-level embeddings? 5
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| didn’t meet my first

Met my first girlfriend that way. X girlfriend until later.

At 8:34, the Bo_ston Center The Boston Center
controll_er _recelved a thlr_d controller got a
transmission from American third transmission

from American 11.

Softmax classifier

(u, v, Ju-v])

LY LY
‘ pooling ‘ ‘ pooling ‘
4 4
‘ BERT ‘ ‘ BERT ‘
Sentence A Sentence B

Reimers and Gurevych (2019) 6
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Sentence Embedding 101: NLI/STS

| didn’t meet my first

Met my first girlfriend that way. X girlfriend until later.

At 8:34, the Boston Center
controller received a third
transmission from American

The Boston Center
controller got a
third transmission
from American 11.

Softmax classifier

(u, v, [uv])
I

LY LY

‘ pooling ‘ ‘ pooling ‘
4 4

‘ BERT ‘ ‘ BERT ‘

Sentence A Sentence B

Reimers and Gurevych (2019)

(5) The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

(4) The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

(3) The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a suspect.
"He is not a suspect anymore.” John said.

(2) The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

(1) The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.

The young lady enjoys listening to the guitar:
re on different topics.

John went horse back riding at dawn with a whole group of friends.

(0) The two sentences

Sunrise at dawn is @ magnificent view to take in if you wake up early enough for it

-1

cosine

4 4

‘ pooling ‘ ‘ pooling ‘
4 L

‘ BERT ‘ ‘ BERT ‘

Sentence A Sentence B
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(5) The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

(4) The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010,

(3) The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

(2) The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

(1) The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin

The young lady enjoys listening to the guitar:
re on different topics.

John went horse back riding at dawn with a whole group of friends.

(0) The two sentences

Sunrise at dawn is @ magnificent view to take in if you wake up early enough for it

+ expensive annotation —
limited to English
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Sentence Embedding 101: query-document pairs

Cross-entropy
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o m ] Tv]
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Karpukhin et al. (2020); Lee et al. (2019); Xiong et al. (2021)
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Sentence Embedding 101: query-document pairs

Cross-entropy

T

. @p1| @p2 - @O1Pn 1
F‘%_’@ ol (o ) 2
uestion: < = Poor
I dnP1 qnP2 ... |GnPn, n
o m ] Tv]
t
[—
>
Answer .

Karpukhin et al. (2020); Lee et al. (2019); Xiong et al. (2021)

» expensive annotation = limited to English
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Sentence Embedding 101: cross-lingual embeddings

Cross-entropy

N

sity site ... sity, 1
sot; sate ... sot, 9
o
snt1 Sptz ... spty n
[l ] [t ]
t
Encoder

!I
'%le chat est assisﬂ-u

Artetxe and Schwenk (2019); Feng et al. (2022)
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Semantic similarity? What about politics?

+ existing methods give “semantic” representation
« — “Liberty is an essential part of democracy”
~ “Liberty is not an essential part of democracy”

« — “Liberty is an essential part of democracy”
=+ “Democracies should always guarantee the liberty of their
citizen”
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Training an embedding that models political opinions

What the model should learn:

+ topic-stance, e.g. Manifesto
(Merz et al., 2016): 3,219
programs of 954 parties over
78 years and 60 countries in
40 languages

Britain is struggling o emerge from a long and difficult recess‘\on/FBmllies 305
are finding it hard to make ends meet/Milhcns are unemployed, and milions &
more have taken pay cuts or reduced hours fo stay n thelrjobs/And there 7}

are osper problers too,/Brtan, for all s many strengths, s st too uneatel - 563
and unfair, a couniry where the Giroumstances of your birth and the income of

your parents stil profoundly affect your chances In fg/Our chidren's futwe s S %
{Preatoned by cimats change, which we have done ar too itle o stop/And sof
the political system is in crisis./ 205

Briain needs a fresh start/We need hope for a diferent, better future./ i‘gg
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Training an embedding that models political opinions

What the model should learn:

+ topic-stance, e.g. Manifesto
(Merz et al., 2016): 3,219
programs of 954 parties over
78 years and 60 countries in
40 languages

Topics/stances

« Traditional Morality: Negative
Multiculturalism: Positive

«  Multiculturalism: Negative

«  Law and Order: Positive

« National Way of Life: Positive

 National Way of Life: Negative
Civic Mindedness: Positive
Party

* Reform Movement

= Francophone Socialist Party
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Training an embedding that models political opinions

What the model should learn:

+ topic-stance, e.g. Manifesto
(Merz et al., 2016): 3,219 ) N (o
programs of 954 parties over P
78 years and 60 countries in 3
40 languages

« party of the speaker, e.g. 1w '
Parlamint (Erjavec et al.,
2024): parliamentary debates Erjavec et al. (2024)
of 29 countries in 31
languages over 28 years

La France
insoumise
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Training an embedding that models political opinions

What the model should learn:

» topic-stance, e.g. Manifesto + source of newspaper (e.g.
(Merz et al., 2016): 3,219 custom dataset through
programs of 954 parties over scraping)

78 years and 60 countries in
40 languages

* party of the speaker, e.g.
Parlamint (Erjavec et al.,
2024): parliamentary debates
of 29 countries in 31
languages over 28 years
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Training an embedding that models political opinions

What the model should learn:

» topic-stance, e.g. Manifesto + source of newspaper (e.g.
(Merz et al., 2016): 3,219 custom dataset through
programs of 954 parties over scraping)

78 years and 60 countries in
40 languages

* party of the speaker, e.g.
Parlamint (Erjavec et al.,
2024): parliamentary debates
of 29 countries in 31
languages over 28 years

« — train a multi-task
classifier
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Constraining a multilingual representation space

» Multilingual classifier » Evaluate: Precision@1 on
might learn one multi-parallel EuroParl (21 languages
subspace per x 23,647 sentences)
language

» Enforce common
multilingual space
using bi-parallel data
(NLLB: 2,656 language
pairs, 450GB)
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Constraining a multilingual representation space

» Multilingual classifier » Evaluate: Precision@1 on
might learn one multi-parallel EuroParl (21 languages
subspace per x 23,647 sentences)
language

¢ Fine-tune from XLM-RoBERTa
« Enforce common

multilingual space

using bi-parallel data Model P@1
(NLLB: 2,656 language LaBSE 934
pairs, 450GB) MEXMA 89.1

Bi-Encoder (ours) 90.9

Manifesto Classifier (unconstrained) 46.7
Classifier (constrained) 79.7
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Meta-evaluation: probing source of newspaper article

Linear probing to
evaluate multiple
embeddings

Custom dataset of 12
French newspapers

Year 2024, temporal
split: 4 months for
train/dev/test (50K+
articles each)

In addition to
multilingual constraint:
continual MLM training
using CC-100
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Meta-evaluation: probing source of newspaper article

* Linear probing to

evaluate multiple Model Accuracy
embeddmgs majority 17.6
+ Custom dataset of 12 LaBSE 53.1
French newspapers MEXMA 57.1
Bi-Encoder (ours) 65.1

* Year 2024, temporal : — :
lit: 4 hs f Manifesto Classifier (unconstrained) 57.9
Spll’[. months for Parlamint Classifier (unconstrained) 62.5
train/dev/test (50K+ Classifier (unconstrained) 62.8
articles each) Classifier + MLM 67.4
Classifier (constrained) 70.1

In addition to
multilingual constraint:
continual MLM training
using CC-100
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Summarization biases: more formally

document D = (s1, s, ...,SN)

sentence s, = (wy, wy, ..., W)

word w; € {0,1}V (one-hot: Y71, w; = 1)

word embeddings h,, = encoder(s,), h € RLx4

sentence embedding s, = pool(h,) € RY

clusters ¢ = (c1, ¢z, ..., cN), ¢, = cluster(s,), ¢, € {0,1}X (one-hot)
ideological distribution p = (py, pa, ..., pi), px = 5<%

P 0.5, i pe =1

summarization bias b = KL(p,q) = Zle pr log (%) g = ideological
distribution of summary, b > 0

« small b: the two distributions match well, small bias

+ great b: the two distributions do not match well, great bias 13
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sentence s, = (wy, wy, ..., W)
word w; € {0,1}V (one-hot: 31, w; = 1)
word embeddings h,, = encoder(s,), h € REX4

sentence embedding s, = pool(h,) € R?
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Machine Translation biases: more formally

sentence s, = (wy, wy, ..., W)

word w; € {0,1}V (one-hot: 31, w; = 1)

word embeddings h,, = encoder(s,), h € REX4
sentence embedding s, = pool(h,) € R?

clusters c = (c1, ¢, ...,cn), ¢y = cluster(s,), ¢, € {0,1}X

N K /
biasb =1 — % b € [0,1], ¢’ = clusters of the translation
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Conclusion

» Assessing the political biases of LLMs is a timely matter
+ Existing methods rely on questionnaires which is brittle
+ We propose a method for embedding political text

Stay tuned for results
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Dataset: IssueBench
realistic templates realistic issues

write a blog about ... || x | Al regulation

J Model evaluation on each issue

Al regulation |: pro neutral con
| /

model stance across templates

Rottger et al. (2025)

+ Limited to English language/US politics

» Uses an LLM for stance detection: possible meta-bias?

» More constrained than questionnaires but still finds little
coherence among LLMs outputs, needs to filter

» Pro-neutral-con stance framework rigid: what does it mean to be
pro domestic violence? pro holocaust?
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