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Introduction Embedding Politics Assessing Biases

Benefits and Risks of LLMs for Democratic Deliberation

• 100M+ people interact with LLMs everyday through ChatGPT
et al.

• LLMs are used to foster democratic participation (make.org)
• LLMs are used to complement polling results (fairgen.ai)
• LLMs generate racist, sexist, and “toxic” texts
• What are the political biases of LLMs? How can we assess

them?
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Introduction Embedding Politics Assessing Biases

Can we ask an LLM what it thinks?

• Administer questionnaires
that give left-right scores (e.g.
politicalcompass.org)

• But how do you get the
answer?

• Should there be a space
between every option? Or
"\n"? Or "\t"?

• Makes a big difference
(Boelaert et al., 2024; Ceron
et al., 2024; Röttger et al.,
2024)

• left-right scoring per question
is arbitrary
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Constraining the Setting

• Assessing biases of LLMs for
• machine translation
• writing assistance
• summarization
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Embedding Politics
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Word Embedding 101: the Distributional Hypothesis

If two words appear in similar contexts, they are synonyms (Harris, 1954)
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Word Embedding 101: Masked Language Modeling

Encoder

Devlin et al. (2019)

• One vector per token → What about higher-level embeddings?
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Introduction Embedding Politics Assessing Biases

Sentence Embedding 101: NLI/STS

Met my first girlfriend that way. I didn’t meet my first 
girlfriend until later.

At 8:34, the Boston Center 
controller received a third 
transmission from American 
11

The Boston Center 
controller got a 
third transmission 
from American 11.

someone else noticed it and i 
said well i guess that’s true and 
it was somewhat melodious in 
other words it wasn’t just you 
know it was really funny

No one noticed and it 
wasn’t funny at all.

Reimers and Gurevych (2019)

Reimers and Gurevych (2019)

• expensive annotation =⇒
limited to English
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Sentence Embedding 101: query-document pairs

Question?

Answer.

...

...

...

Cross-entropy

Karpukhin et al. (2020); Lee et al. (2019); Xiong et al. (2021)

• expensive annotation =⇒ limited to English
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Sentence Embedding 101: cross-lingual embeddings

Artetxe and Schwenk (2019); Feng et al. (2022)
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Introduction Embedding Politics Assessing Biases

Semantic similarity? What about politics?

• existing methods give “semantic” representation

• =⇒ “Liberty is an essential part of democracy”
≈ “Liberty is not an essential part of democracy”

• =⇒ “Liberty is an essential part of democracy”
̸= “Democracies should always guarantee the liberty of their
citizen”

9
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Introduction Embedding Politics Assessing Biases

Training an embedding that models political opinions

What the model should learn:

• topic-stance, e.g. Manifesto
(Merz et al., 2016): 3,219
programs of 954 parties over
78 years and 60 countries in
40 languages

• party of the speaker, e.g.
Parlamint (Erjavec et al.,
2024): parliamentary debates
of 29 countries in 31
languages over 28 years

• source of newspaper (e.g.
custom dataset through
scraping)

• =⇒ train a multi-task
classifier
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Introduction Embedding Politics Assessing Biases

Constraining a multilingual representation space

• Multilingual classifier
might learn one
subspace per
language

• Enforce common
multilingual space
using bi-parallel data
(NLLB: 2,656 language
pairs, 450GB)

• Evaluate: Precision@1 on
multi-parallel EuroParl (21 languages
× 23,647 sentences)

• Fine-tune from XLM-RoBERTa

Model P@1

LaBSE 93.4
MEXMA 89.1
Bi-Encoder (ours) 90.9

Manifesto Classifier (unconstrained) 46.7
Classifier (constrained) 79.7
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Introduction Embedding Politics Assessing Biases

Meta-evaluation: probing source of newspaper article

• Linear probing to
evaluate multiple
embeddings

• Custom dataset of 12
French newspapers

• Year 2024, temporal
split: 4 months for
train/dev/test (50K+
articles each)

• In addition to
multilingual constraint:
continual MLM training
using CC-100

Model Accuracy

majority 17.6
LaBSE 53.1
MEXMA 57.1
Bi-Encoder (ours) 65.1

Manifesto Classifier (unconstrained) 57.9
Parlamint Classifier (unconstrained) 62.5
Classifier (unconstrained) 62.8
Classifier + MLM 67.4
Classifier (constrained) 70.1
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Assessing Biases



Introduction Embedding Politics Assessing Biases

Summarization biases: more formally

document D = (s1, s2, ..., sN)

sentence sn = (w1,w2, ...,wL)

word wl ∈ {0, 1}V (one-hot:
∑L

l=1 wl = 1)

word embeddings hn = encoder(sn), h ∈ RL×d

sentence embedding sn = pool(hn) ∈ Rd

clusters c = (c1, c2, ..., cN), cn = cluster(sn), cn ∈ {0, 1}K (one-hot)

ideological distribution p = (p1, p2, ..., pK), pk =
∑N

n=1 cnk
N ,

pk ∈ [0, 1]K,
∑K

k=1 pk = 1

summarization bias b = KL(p, q) =
∑K

k=1 pk log
(

pk
qk

)
, q = ideological

distribution of summary, b ≥ 0

• small b: the two distributions match well, small bias
• great b: the two distributions do not match well, great bias
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Machine Translation biases: more formally

sentence sn = (w1,w2, ...,wL)

word wl ∈ {0, 1}V (one-hot:
∑L

l=1 wl = 1)

word embeddings hn = encoder(sn), h ∈ RL×d

sentence embedding sn = pool(hn) ∈ Rd

clusters c = (c1, c2, ..., cN), cn = cluster(sn), cn ∈ {0, 1}K

bias b = 1 −
∑N

n=1
∑K

k=1 cnkc′nk
N , b ∈ [0, 1], c′ = clusters of the translation
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Introduction Embedding Politics Assessing Biases

Conclusion

• Assessing the political biases of LLMs is a timely matter

• Existing methods rely on questionnaires which is brittle

• We propose a method for embedding political text

• Stay tuned for results
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Related Work

Röttger et al. (2025)

• Limited to English language/US politics
• Uses an LLM for stance detection: possible meta-bias?
• More constrained than questionnaires but still finds little

coherence among LLMs outputs, needs to filter
• Pro-neutral-con stance framework rigid: what does it mean to be

pro domestic violence? pro holocaust?
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