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Outline

● Introduction (Compression of LMs)

● Impact of Pruning on Bias 

● Impact of Quantization on LMs Confidence 

● Dataset in French for Social Reasoning

● Conclusion
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● Language Modelling

𝜃∗ = argmax
𝜃
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𝑤𝑖,𝑗 is the 𝑗-th token in the sequence

Compression of LMs
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𝑤𝑖,𝑗 is the 𝑗-th token in the sequence

● Compression of LLMs via Pruning

𝜃∗ = {𝜃𝑖 ∣ 𝜃𝑖 𝑖𝑠 𝑛𝑜𝑛-𝑝𝑟𝑢𝑛𝑒𝑑} ∪ {𝜃𝑖 = 0 ∣ 𝜃𝑖 𝑖𝑠 𝑝𝑟𝑢𝑛𝑒𝑑}

Compression of LMs
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Impact of layer pruning on bias in 
LMs for hate speech detection
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The Other Side of Compression: 
Measuring Bias in Pruned Transformers 
(Proskurina et al, IDA 2023)

● We measure identity-based bias in pruned Transformer LMs

● We study which group of encoder layers (bottom, middle or 
upper) can be efficiently pruned without biased outcomes 

● We propose word-level supervision in pruned Transformer LMs 
as a debiasing method
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Bias in Hate Speech Classification
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Bias = LM classifies neutral text as offensive and pays ‘attention’ to sensitive attributes  



Methodology
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1) Prune Transformer LM (e.g., BERT)
2) Fine-tune LM on hate speech classification task (with HateXplain) 
3) Prune selected weights
4) Compare accuracy, bias, and explainability scores of LMs before and after pruning

Here we remove
the 2 lower layers



Evaluate Bias in Compressed models

Null Hypothesis 𝐻0: If the impact of compression is uniform, then the shift in 
scores achieved on the texts mentioning a target community t after pruning 
should also be uniform compared to the overall scores shift
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no significant difference

significant difference

non-pruned full model

+targeting community t

compressed model

+targeting community t



Results: Compressed LMs are prone to bias

Performance of original and pruned models on HATEXPLAIN test set
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number of groups
with a significant
difference in term of 
classification (on 10)

full model 4 layers removed



Results: Compressed LMs rely on unimportant 
tokens

Performance of original and pruned models on HATEXPLAIN test set
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Results: The impact of compression is not 
uniform

OY: Subgroup AUC scores on HateXplain, OX: Target communities
LMs: BERT, RoBERTa 13



Solution: Supervised Attention learning 

Predicted Rationales

[0,0,0,…0.25,0,0,0.3,0..16,0]

True Rationales

…
[0,0,0,…1,1,1,1,0]

…
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Results: Fine-tuning with attention loss compensates for 
fairness loss

Performance and fairness scores 
(Subgroup AUC) of models trained 
with word-level supervision

*λ = 0 - non-supervised attention learning

BERT Subgroup AUC scores
• .59 - without attention 

supervision
• .80 - with attention supervision
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Conclusion on this work

• We conducted two chains of experiments to analyze the effect of 
Transformer LMs pruning in the context of hate speech classification 
tasks (with and without attention supervision) 

• We compare both fairness and performance loss for pruned BERT, 
RoBERTa, and their distilled versions 

• We show and statistically prove that removing any layer from 
Transformer LMs results in fairness loss even when the performance 
loss could be negligible 

• We conduct supervised attention-learning experiments that help to 
reduce bias in pruned models
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Impact of quantization on 
calibration and model confidence
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● Compression of LLMs via Quantization

መ𝜃∗ = ෡𝜃𝑖 ෡𝜃𝑖 = 𝑄 𝜃𝑖 , ෡𝜃𝑖 𝜖 ℚ , ℚ = 𝑚 ≪ 𝑛

Compression of LMs

18

Quantization

2.2 3.3 4.2 5.6 8.4

2 3 4 6 8

5 numbers in bfloat16: 5 × 2 = 10 bytes
175B × 2 = 350GB VRAM

5 numbers in int8: 5×1 = 5 bytes
175 × 1 = 175GB VRAM



Contribution (Proskurina et al., NAACL-HLT 2024)

● We investigate how quantization with GPTQ (Frantar et al., 2023)
influences the calibration and confidence of LLMs

● We assess the confidence alignment between compressed and full-
precision LLMs at scale

● We explain the quantization loss from the initial confidence perspective
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Zero-shot Question Answering: pipeline
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is the model
well calibrated?

how far are
their weigths?



Methodology

Classification problem: questions x paired with candidate answers y
→ The generative model then processes these concatenated question-
answer pairs to predict the most probable answer y from the provided
choices Y for a given x:
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Results: Confidence Impact

A consistent trend of overconfidence emerges in both pre- and 
post-quantization stages, with an average confidence level
around∼0.95 for incorrect predictions.
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Results: Jensen-Shannon Distances

The distances between original and compressed LLMs decrease
as the model size scales up
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Mean Jensen-Shannon distances 
between fp16 and quantized LLMs
across benchmarks. 
The distances show dissimilarities in 
true-class probability distributions



Conclusion on this work

● We have investigated the impact of quantization on the confidence 
and calibration of LLMs

● Quantization leads to an increase in calibration error and statistically
significant changes in confidence levels for correct predictions

● We identify instances of confidence change occurring in data where
models lack confidence before quantization

● Our findings provide insights into quantization loss and suggest a 
potential direction for future work, emphasizing the need to focus on 
calibrating LLMs, specifically on uncertain examples
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New Datasets for Multilingual 
Moral Reasoning in LMs
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Developing a French corpus of Moral stories
(Leteno et al., NACCL 2025)
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● Adaptation of the Moral Stories dataset (Emelin et al., EMNLP 2021)

○ automatic translation from English to French
○ adaptation to French 
○ thorough manual verification



Developing a French corpus of Moral stories
(Leteno et al., new paper accepted at NACCL 2025)

● Adaptation of the Moral Stories dataset (Emelin et al., EMNLP 2021)
○ automatic translation from English to French
○ adaptation to French 
○ thorough manual verification

● Histoires Morales can be used for:
○ commonsense reasoning / social reasoning / moral reasoning
○ text classification
○ text generation

● Now available on HuggingFace:
https://huggingface.co/datasets/LabHC/histoires_morales
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https://huggingface.co/datasets/LabHC/histoires_morales


HistoiresMorales: Influencing LLMs’ moral alignment
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Conclusion

ANR Dike Project 
Contributions

ERIC Lab 
(University of Lyon 

and Lyon 2)

Post-hoc impact evaluation 
of pruning on bias on hate 

speech models

Post-hoc impact evaluation 
of quantization on general 

model confidence

New Dataset for moral 
reasoning in French

Solution to the bias increase 
problem after pruning

(attention loss with rationales)

Solution to the bias increase 
problem during quantization
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